MA441: Algebraic Structures I

Lecture 16

29 October 2003
Review from Lecture 15:

Theorem 6.1: Cayley’s Theorem

Every group is isomorphic to a group of permutations.

Example:
\[
\phi(R \cdot D1) = \phi((132)(23)) = \phi((132)) \phi((23)) \\
\phi((132)) \phi((23)) = (123)(456) \cdot (14)(26)(35) \\
(123)(456) \cdot (14)(26)(35) = (16)(25)(34) \\
(16)(25)(34) = \phi((12)) = \phi(D3).
\]
Theorem 6.2: Properties of Isomorphisms Acting on Elements

Suppose that $\phi : G_1 \rightarrow G_2$ is an isomorphism. Then the following properties hold.

1. ϕ sends the identity of G_1 to the identity of G_2.

2. For every integer n and for every group element a in G_1, $\phi(a^n) = (\phi(a))^n$.

3. For any elements $a, b \in G_1$, a and b commute iff $\phi(a)$ and $\phi(b)$ commute.

4. The order of a, $|a|$ equals $|\phi(a)|$ for all $a \in G_1$ (isomorphisms preserve orders).
5. For a fixed integer \(k \) and a fixed group element \(b \) in \(G_1 \), the equation \(x^k = b \) has the same number of solutions in \(G_1 \) as does the equation \(x^k = \phi(b) \) in \(G_2 \).

Proof:

Part 5:
Apply the isomorphism \(\phi \) to the equation \(x^k = b \) to get \(\phi(x^k) = \phi(x)^k = \phi(b) \).

Let’s rename the variable \(x \) to \(y \) in the second equation and write \(y^k = \phi(b) \).

For every solution \(x \in G_1 \) to the first equation, we get a solution \(y \in G_2 \) to the second equation. Because \(\phi \) is one-to-one, there are at least as many \(y \) as \(x \).
Suppose \(y \in G_2 \) is a solution to \(y^k = \phi(b) \). Since \(\phi \) is onto, there is an \(x \in G_1 \) such that \(\phi(x) = y \).

Now \(y^k = \phi(x)^k = \phi(x^k) = \phi(b) \). Since \(\phi \) is one-to-one, we know \(x^k = b \).

Therefore we have at least as many \(x \) as \(y \), and the number of solutions of the two equations are equal.

(Non)example: \(\mathbb{C}^* \) is not isomorphic to \(\mathbb{R}^* \) because the equation \(x^4 = 1 \) has a different number of solutions in each group.
Theorem 6.3: Properties of Isomorphisms Acting on Groups

Suppose that \(\phi : G_1 \to G_2 \) is an isomorphism. Then the following properties hold.

1. \(G_1 \) is Abelian iff \(G_2 \) is Abelian.

2. \(G_1 \) is cyclic iff \(G_2 \) is cyclic.

3. \(\phi^{-1} \) is an isomorphism from \(G_2 \) to \(G_1 \).

4. If \(K \leq G_1 \) is a subgroup, then \(\phi(K) = \{ \phi(k) | k \in K \} \) is a subgroup of \(G_2 \).
Proof:

Part 1: follows from part 3 of Theorem 6.2, which shows that isomorphisms preserve commutativity.

Part 2: follows from part 4 of Theorem 6.2, which shows that isomorphisms preserve order and by noting that if $G_1 = \langle a \rangle$, then $G_2 = \langle \phi(a) \rangle$.
Part 3: Since ϕ is one-to-one and onto, for every $y \in G_2$, there is a unique $x \in G_1$ such that $\phi(x) = y$. Define $\phi^{-1}(y)$ to be this x.

Clearly, ϕ^{-1} is one-to-one and onto, since ϕ is.

In fact, $\phi \circ \phi^{-1}$ is the identity map on G_2, and $\phi^{-1} \circ \phi$ is the identity map on G_1.

We need to show the homomorphism property for ϕ^{-1}:

$$\phi^{-1}(ab) = \phi^{-1}(a) \phi^{-1}(b).$$
Let $\phi(x) = a$ (so $\phi^{-1}(a) = x$) and let $\phi(y) = b$ (so $\phi^{-1}(b) = y$).

Then substituting for a and b,

$$\phi^{-1}(ab) = \phi^{-1}(\phi(x)\phi(y)) = \phi^{-1}(\phi(xy)) = xy = \phi^{-1}(a) \phi^{-1}(b).$$

Therefore $\phi^{-1} : G_2 \to G_1$ is an isomorphism.
Definition:
An isomorphism from a group G onto itself is called an automorphism of G. The set of automorphisms is denoted $\text{Aut}(G)$.

Example 9:
Complex conjugation is an automorphism of \mathbb{C} under addition and \mathbb{C}^* under multiplication.

Example 10:
In \mathbb{R}^2, $\phi(a,b) = (b,a)$ is an automorphism of \mathbb{R}^2 under componentwise addition.
Correction: Previously I defined an inner automorphism to be of the form \(\phi_a(x) = axa^{-1} \), as Gallian does. To compose from left to right, we need instead the following definition.

Definition:

Let \(G \) be a group, and let \(a \in G \).

The function \(\phi_a \) defined by

\[
\phi_a(x) = a^{-1}xa,
\]

for all \(x \in G \), is called the **inner automorphism** of \(G \) **induced by** \(a \).

The set of inner automorphisms is denoted \(\text{Inn}(G) \).
Theorem 6.4: $\text{Aut}(G)$ and $\text{Inn}(G)$ are groups

The set of automorphisms $\text{Aut}(G)$ of a group G and the set of inner automorphisms $\text{Inn}(G)$ of a group are both groups under the operation of function compositions.

Proof:
(Exercise 15)

$\text{Inn}(G)$ is closed under composition:

$$x\phi_a\phi_b = (a^{-1}xa)\phi_b = b^{-1}(a^{-1}xa)b = x\phi_{ab}.$$

$\text{Inn}(G)$ is closed under inversion:

$$x\phi_a\phi_{a^{-1}} = (a^{-1}xa)\phi_{a^{-1}} = x.$$
Example 13:

Aut(\(\mathbb{Z}/10\mathbb{Z}\)) is isomorphic to \(U(10)\).

An automorphism \(\alpha \in \text{Aut}(\mathbb{Z}/10\mathbb{Z})\) is determined by \(\alpha(1)\) because

\[
\alpha(k) = \alpha(\underbrace{1 + 1 \cdots + 1}_{k}) = k\alpha(1).
\]

Since 1 has order 10 in \(\mathbb{Z}/10\mathbb{Z}\), Theorem 6.2 tells us that \(\alpha(1)\) must also have order 10.

There are four elements of \(\mathbb{Z}/10\mathbb{Z}\) with order 10: 1, 3, 7, 9, hence \(\alpha(1)\) must be one of the four.
Let α_1, α_3, α_7, and α_9 be maps for which $\alpha_1(1) = 1$, $\alpha_3(1) = 3$, $\alpha_7(1) = 7$, and $\alpha_9(1) = 9$.

These are the only possible automorphisms. We can easily check that they are in fact automorphisms.

Consider α_3. Since 3 generates $\mathbb{Z}/10\mathbb{Z}$, the map is onto.

The map α_3 is also one-to-one. If $3a = 3b$, then $a = b$, because 3 is invertible mod 10.

The homomorphism property holds since $\alpha_3(a + b) = 3(a + b) = 3a + 3b = \alpha_3(a) + \alpha_3(b)$.
Theorem 6.5: $\text{Aut}(\mathbb{Z}/n\mathbb{Z}) \cong U(n)$

For every positive integer n, $\text{Aut}(\mathbb{Z}/n\mathbb{Z})$ is isomorphic to $U(n)$.

The proof follows the reasoning of Example 13.
Chapter 7:
Cosets and Lagrange’s Theorem

(page 134)

Definition:
Let G be a group and H a subset of G. For any $a \in G$, the set

$$\{ah : h \in H\}$$

is denoted aH. Analogously,

$$Ha = \{ha : h \in H\}.$$

When H is a subgroup of G, aH is the left coset of G containing a and Ha is the right coset of G containing a.

We say that a is a coset representative of aH or Ha. We write $|aH|$ and $|Ha|$ to denote the number of elements in the respective sets.
Theorem 7.1: Lagrange’s Theorem

If G is a finite group and $H < G$ is a subgroup, then $|H|$ divides $|G|$. Moreover, the number of distinct left (or right) cosets of H in G is $|G|/|H|$.