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Review from Lecture 17:
Theorem 6.5: Aut(Z/nZ) ~ U(n)

For every positive integer n, Aut(Z/nZ)
is isomorphic to U(n).

The proof used the map T : Aut(Z/n%z) — U(n)
that sends a € Aut(Z/nZ) to a(l).



Chapter 7.
Cosets and Lagrange’s Theorem

Definition:
Let G be a group and H a subset of G. For
any a € (G, the set

{ah : h € H}
is denoted aH. Analogously,
Ha =1{ha:he H}.

When H is a subgroup of G,
aH is the left coset of G containing a and
Ha is the right coset of G containing a.

We say that a is a coset representative of a H
or Ha. We write |aH| and |Ha| to denote the
number of elements in the respective sets.



Example 1:
Let G = Sz and H = {(1),(13)}. Then the left
cosets of H in G are

H=1{(1),(13)}
(12)H = (123)H = {(12), (123)}

(12) and (123) are coset representatives for
this coset.

(23)H = (132)H = {(23), (132)}

(23) and (132) are coset representatives for
this coset.



Example 3:
Let H={0,3,6} in (Z/9Z,+).

We use a + H as additive notation for cosets.
The cosets of H in Z/97Z are
O+H=H=1{0,3,6}=34+H=6+H

1+ H={1,47Y=44+H=7+H

1,4,7 are coset representatives for this coset.
24+ H=4{2,5,8=54+H=8+H

2,5,8 are coset representatives for this coset.



Lemma: Properties of Cosets

Let H be a subgroup of G and a,b € G. Then

l. a€aH,

2. aH =H iffae H,

3. aH =bH or aHNbH = (),

4. aH = bH iffa~lbec H,

5. |[aH| = |bH

!

6. aH = Ha iff H = aHa !,

7. aH <G iffae H.



Proof:

Part 1. a =ae € aH.

Part 2: aH = H iff a € H.

Assume aH = H. Show a € H.

Since a =ae € aH = H, then a € H.



(Proof of part 2 continued)
Conversely, assume a € H. Show aH = H.
First show aH C H.

Since H is closed under the group operation,
aH C H.

Next show H C aH.
Since a € H, we have a1 ¢ H.

For any h € H, we know a~1h € H, so
h=ch=(aa " )h=a(a"th) € aH,

which shows h € aH.



Part 3: aH = bH or aH NbH = ().

We prove this by assuming the second state-
ment is false and showing that this implies the
first statement is true.

Suppose x € aHNbH, i.e., aHNbH is not empty.
We wish to show aH = bH.

Let x = ahqy = bho, fOor some hi,ho € H.

Then a = bhohy! and b= ahih;t.

Then aH = (bhohT ) H = b(hohy 1 H).

Now hohyl € H, so by Part 2, hoh71H = H.

So aH = b(hoh{*H) = bH.



Part 4: ol = bH iffa~1bec H.
Assume aH = bH.
1

Multiply on the left by a™-.

aoH = bH iff H=a 1bH.

By Part 2, H =a 1bH iff o= 1b c H.
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Part 5: |aH| = |bH|

We will exhibit a one-to-one and onto map be-
tween aH and bH.

The map that sends ah — bh is clearly onto.

It is one-to-one because of cancellation: if
ah1 = aho, then h1 = ho.

This shows the sets have the same size.
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Note that properties 1, 3, and 5 show that the
left cosets of a subgroup H < G partition G
into blocks of equal size.

Property 1 says every element is contained in
a coset.

Property 3 says two cosets are identical or dis-
joint. That means every group element is con-
tained in exactly one coset.

Property 5 says all the cosets are the same
size.
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Part 6: aH = Ha iff H = aHa L.

aH = Ha iff (aH)a"1 = (Ha)a™ 1 iff
aHa 1 =H.

We can break this down in greater detail as an
exercise.

Let’'s consider one direction: aH = Ha implies
H =aHa L.

(The other direction will be essentially the same
reasoning in reverse.)
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Suppose aH = Ha.
First we prove H C aHa L.

Choose any h € H. Then there is an b/ ¢ H
such that ah/ = ha. so h = ah/a=1.

That proves H C aHa 1.
Next we prove aHa 1 C H.

Choose any aha~! € aHa~ 1, where h ¢ H. Let

g = aha=1. Then ga = ah. Since aH = Ha, g

must be in H.

That proves aHa~ 1 C H, so aHa ! = H.
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Part 7. aH < G iffae H
(That is, aH = H.)
Suppose aH is a subgroup of G.

Then aH contains the identity, so aH = H
(Part 3), which holds iff a € H (Part 2).

Conversely, if ae€e H, then aH = H < G
(Part 2).
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Theorem 7.1: Lagrange’s Theorem

If G is a finite group and H < GG is a subgroup,
then |H| divides |G|. Moreover, the number
of distinct left (or right) cosets of H in G is
Gl/|H].

Proof:
Let a1 H,aoH,...,arH denote a complete set of
distinct left cosets of H in G.

Since the cosets partition G, we have
G=a1HUa>HU---UarH,
and then
G| = la1H| + |a2H| + -+ - + |arH|.

Since all cosets have the same size, |G| = r|H|.
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Definition:

The index of a subgroup H in G is the number
of distinct left cosets of H in G and is denoted
|G : H| (or [G: H]).

We consider some implications of Lagrange’s
Theorem.

Corollary 1:
If G is a finite group and H < G, then |G : H| =
|G|/ H].

In the notation of the theorem, » = |G : H| =
GI/IH].
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Corollary 2:
In a finite group, the order of each element
divides the order of the group.

For every a € G, (a) < G, and |a| = |(a)].

Corollary 3: Groups of Prime Order are
Cyclic

A group of prime order is cyclic.
Proof:

Suppose a € G, a # e. Then |a| divides |G|,
which is prime, so |a| = |G|. Therefore (a) = G.
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Corollary 4:

Let G be a finite group, and let a € G. Then
G| —
a _— €.

Proof.
By Corollary 2, |a| divides |G|, say |G| = |a] - k.

Then alGl = glalk = ¢k = ¢.
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Corollary 5: Fermat'’s Little Theorem

For every integer a and every prime p,
a? =a (mod p).

Proof:
Consider U(p). Let a=r (mod p),
where 0 < r < p.

The order of U(p) is p— 1. So by Corollary 4,

aP~1 = P—1 = ¢ in U(p). Multiply by a to get
a? =a (mod p).
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Note that the converse to Lagrange’s Theorem
is false.

(The converse is true for cyclic groups.)
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Theorem 7.2: Classification of Groups of
Order 2p

Let G be a group of order 2p, where p is a
prime greater than 2. Then G is isomorphic to
either Z/2pZ or Dy.
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