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Review from Lecture 5:

We defined

• the center Z(G) of a group G

• the centralizer C(a) of an element a ∈ G
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We also proved an important theorem about

the structure of cyclic groups.

Theorem 4.1: Criterion for ai = aj

Let G be a group, and let a belong to G. If

a has infinite order, then all distinct powers of

a are distinct group elements. If a has finite

order, say, n, then

〈a〉 = {e, a, a2, . . . , an−1}

and ai = aj if and only if n divides i − j.
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We have two immediate consequences of this

theorem.

The first corollary states that the order of an

element equals the order of the subgroup gen-

erated by that element.

Corollary 1:

For any group element a,

|a| = |〈a〉|.

Corollary 2:

Let G be a group and let a ∈ G have order n.

If ak = e, then n divides k.
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Multiplication (composition) of elements in a

cyclic group of order n is accomplished by ad-

dition modulo n.

In fact, Z/nZ is a prototype for all cyclic groups.

(A cyclic group 〈a〉 of order n is isomorphic to

Z/nZ, where a plays the role of 1.)
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Theorem 4.2:

Let a be an element of order n in a group and

let k be a positive integer. Then

〈ak〉 = 〈agcd(n,k)〉

and

|ak| =
n

gcd(n, k)
.

Proof:

Let d = gcd(n, k) and k = dr.

Since ak = (ad)r, we have 〈ak〉 ⊆ 〈ad〉.
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Using the Euclidean algorithm, we can find s, t

such that d = ns + kt. Then

ad = ans+kt = (an)s · (ak)t = (ak)t,

so 〈ak〉 ⊇ 〈ad〉 and the two sets are equal.

We prove the second part of the theorem by

showing that |ad| = n/d for any d|n.
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Clearly, (ad)n/d = an = e, so |ad| ≤ n/d.

Suppose i is a positive integer less than n/d.

Then i · d < n and therefore (ad)i 6= e. So the

order of ad is n/d.

Now apply this to ak.

Since |ak| = |〈ak〉|, |ad| = |〈ad〉|, and 〈ak〉 = 〈ad〉,
we have that the order of ak is n/d, that is,

|ak| = n/gcd(n, k).
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Corollary 1:

Let |a| = n. Then 〈ai〉 = 〈aj〉 iff

gcd(n, i) = gcd(n, j).

Proof:

By Theorem 4.2, we have that

〈ai〉 = 〈agcd(n,i)〉 and 〈aj〉 = 〈agcd(n,j)〉.

We need to prove 〈agcd(n,i)〉 = 〈agcd(n,j)〉 iff

gcd(n, i) = gcd(n, j).
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Clearly gcd(n, i) = gcd(n, j) implies

〈agcd(n,i)〉 = 〈agcd(n,j)〉.

Suppose that 〈agcd(n,i)〉 = 〈agcd(n,j)〉.

This means |〈agcd(n,i)〉| = |〈agcd(n,j)〉|, so

|agcd(n,i)| = |agcd(n,j)|.

By the second part of Theorem 4.2, on the

LHS |agcd(n,i)| = n/gcd(n, i) and on the RHS

|agcd(n,j)| = n/gcd(n, j). Therefore,

n

gcd(n, i)
=

n

gcd(n, j)
,

so gcd(n, i) = gcd(n, j).
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Here are two special cases of Corollary 1.

Corollary 2:

Let G = 〈a〉 be a cyclic group of order n. Then

G = 〈ak〉 iff gcd(n, k) = 1.

Corollary 3:

An integer k in Z/nZ is a generator of Z/nZ iff

gcd(n, k) = 1.

(Compare this to exercises 1, 2 of Chapter 4.)
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Example:

Find all generators of U(50). We’re given that

3 generates U(50) and has order 20.

The positive integers k less than 20 that are

relatively prime to 20, i.e., gcd(20, k) = 1,

correspond to the powers of 3 that generate

U(50), by Corollary 2.

These integers are {1,3,7,9,11,13,17,19}.

So 3 = 31, 27 = 33, 37 ≡ 37 (mod 50), and

so on, generate U(50).
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Caution: Notation for composition

In a group of functions, it is standard in group

theory literature to compose from left to right

(in the order in which you write symbols). To

write ab means to first consider a, then b.

However, Gallian wishes to maintain consis-

tency with the notation for composition of func-

tions, where fg means f(g) = f ◦ g. In this

notation, fg means to first consider g then f .

We will consistently follow left to right compo-

sition. This may cause confusion with Gallian’s

notation for permutations.
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Reading Assignment:

Chapter 4: pages 78–82

Chapter 5: pages 93–100
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Homework Assignment 3

Chapter 2: 33, 34, 35

Chapter 3: 6, 7, 13, 22 (why?), 32

Chapter 4: 3, 10, 14, 17
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